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Abstract
Following a quench, colloidal systems with strong, short-ranged, attractive
interactions can exhibit transient gelation, instead of the classical phase-
ordering mechanisms of spinodal decomposition or nucleation. The particles
aggregate into a tenuous, system-spanning network, which, for a time, remains
robust to mechanical disturbance. Eventually, the network’s ability to recover
from destructive deformations becomes compromised, and the gel collapses.
A detailed experimental study of gel collapse was reported in the preceding,
companion article, leaving several open questions regarding the processes
involved. We present a theoretical investigation into the factors affecting a
gel’s lifetime, concentrating in particular on the surprising influence of the size
and shape of the container. We construct a model in which solvent dynamics are
replaced by a dissipative coupling of the particulate network to a fixed frame and
show that, in the absence of zero-frequency elasticity, such a coupling results
in a novel class of matter in which stresses cannot propagate beyond a finite
distance. We find our prediction of the characteristic length to be in quantitative
agreement with the experimental data, and show how its ratio to the dimensions
of the container controls the sedimentation. We discuss some aspects of the
ageing mechanism, and suggest that a sudden collapse is ultimately due to
erosion with positive feedback.

1. Introduction

Transient gelation is a ubiquitous mechanism observed in attractive colloidal systems
undergoing phase ordering. The colloidal particles bind reversibly into a network, forming
what is termed a physical gel, as opposed to a chemical gel in which covalent cross-linking
occurs. Some time after formation the gel suddenly destabilizes, following which phase
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ordering may proceed along classical lines. The formation of particulate gels has been a topic
of much research [1–4], though it remains somewhat enigmatic. To equip the reader with a
mental image of such gels, we shall review some of the ideas concerned with their formation
in the next section. However, the remainder of this article will focus on their collapse, with a
view to understanding some aspects of the experiments reported in the preceding, companion
article [5]. We leave many of the observed phenomena [5] to future theoretical investigation,
and concentrate on the early stage of collapse. It is at this early stage, we shall argue, that the
ultimate destiny of the gel is determined.

The accompanying article [5] details experimental measurements of the lifetime of a
transient gel. We do not attempt to calculate a formula for this lifetime since it is determined in
part by complex late-stage ageing phenomena beyond the scope of this article (but discussed
in section 7). We do, however, attempt to explain the observation that, for some samples but
not for others, the gel lifetime is affected by the dimensions of the container. This apparently
unremarkable observation will turn out to be crucial to understanding the mechanics and
mechanisms of transient gels.

Building on what is known from experimental investigations, as discussed in sections 2
and 3, we construct a coarse-grained theoretical model of gel sedimentation by identifying
the relevant macroscopic order parameters as concentration, velocity and stress in the network
structure. This model is presented in section 4. Although simple, our model explains some
of the settling behaviour observed in transient gels. It also identifies the physical processes
involved in gel collapse, thus providing a general framework for the description of transient
gelation on which a more detailed model may be constructed. We stress that our theoretical
approach is a general one and should be applicable to transient gels formed in any weakly
aggregating system.

Using the model we shall show that the principal material properties by which to
characterize a gelled system are the bulk viscosity of the network and the coefficient of
drag due to solvent back-flow. Dimensionally, the ratio of these quantities defines a length-
scale, the ‘stress screening length’, the significance of which will be investigated in detail.
We shall show that transient gels belong to a novel class of matter in which transport of
momentum, by diffusion or sound propagation, is screened beyond this finite characteristic
length-scale. The crux of the physics is this: a mechanical perturbation will cause a distortion
to propagate through any material. If the material (in this case, the network of particles) has a
finite elastic memory, then the signal must eventually be lost if momentum is non-conserved
due to a dissipative background of solvent. The upshot of this is that, for large samples,
the majority of the gel cannot ‘feel’ the presence of the boundary walls of its container, so
that the suspension falls at its terminal velocity. Smaller samples, or those that can store
elastic forces for longer, are able to transmit stresses that substantially alter the system’s
behaviour.

Following the presentation of the model, we estimate, in section 5, the values of its
parameters by considering the rates of various structural rearrangements. In section 6 we
compare the qualitative and quantitative predictions with the results of the experiments reported
in the preceding, companion paper [5]. From the experimental data, we determine the stress
screening length, and demonstrate agreement with our predictions. Finally we shall discuss
the implications of this work in section 7.

2. Gel formation and structure

It has been widely observed that the classical picture of phase-ordering kinetics is insufficient.
When a single thermodynamic phase is quenched into a co-existence region of its phase
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diagram, it may evolve towards two-phase equilibrium via a number of alternative processes.
According to the classical mean-field theory of phase ordering [6], if the initial state is
unstable with respect to concentration fluctuations, phase separation will proceed by spinodal
decomposition, leading rapidly to a mesoscopic texture of interconnected domains of the
separated phases. Alternatively, if formation of an interface between phases carries a price of
surface energy, the initial state may be metastable. In this case, an energetically unfavourable
(and therefore rare) condensation nucleus must fluctuate into existence before growing into a
macroscopic second phase.

A third process, not predicted by the classical theory, has been seen for particularly
deep quenches of colloidal systems with short-ranged attractive interactions [1, 2]. The
particles assemble into a tenuous, system-spanning network with a structure that is locally
fractal [1], giving the system the properties of a gel. It has been shown that particulate
gels resulting from the deepest quenches into the equilibrium two-phase region (with inter-
particle attractions many times kBT ) have the features of diffusion-limited cluster–cluster
aggregation (DLCA), both in the form of the static structure factor S(q) [1] and in the time
dependence of its peak qm ∼ t−1/df during formation [2] (where df is the local fractal
dimension). The canonical DLCA algorithm [7] cannot reproduce the transient nature of
a gel, unless modified to allow random breaking and reformation of bonds [8]. In simulations,
this reversible DLCA was shown to exhibit a lower limit on the concentration for which
system-spanning clusters form [8], in qualitative agreement with the existence of a ‘gel line’
in the phase diagram. Clearly, the canonical DLCA represents one limit of the modified
process, as bond lifetime, or equivalently attraction strength, tends to infinity. For weaker
bonds, or low particle concentrations, the structures formed become, to the eye at least, more
akin to spinodal textures. However, the local structure is fractal rather than liquid-like [8]. In
experiments too, the behaviour of some gels hints at spinodal decomposition. For fairly shallow
quenches, still in the gel region, the peak in the structure factor evolves as t−1/3 [2], although
local structure is still fractal. The crossover from DLCA-like to spinodal-like behaviour
continues for attraction strengths below the gel line, where a non-percolating liquid phase
with a strangely fractal structure has been observed to form, in two dimensions, by spinodal
dynamics [9].

The significance of the fact that this transient gelation has been observed in colloidal
systems, as opposed to atomic or molecular ones, may be only that length- and timescales
of colloidal phase ordering are sufficiently large to be easily observable. Whatever the
description of the formation process, the transient gels all seem to share two features: non-
ergodicity and percolation. Recent measurements of the dynamic structure factor in transient
gels [3] suggest glassy properties, despite rather low particle concentrations (φ ∼ 0.2) not
usually associated with structural glasses. The measurements revealed correlations whose
decay is very slow, and appears to depend on the age of the system, indicating glassy non-
ergodicity. This is in broad agreement with recent mode-coupling theory (MCT) calculations
for hard spheres with short attractive interactions [10]. The MCT predicted a non-ergodicity
transition, close to the experimental gel line, at which relaxations are impeded by local
bond formation [10]. The importance of percolation was discovered in recent simulations
of Brownian hard spheres with short, attractive interactions [4], for which the large-scale
structure, inaccessible to MCT, was analysed. In the simulations, the measurement of sub-
diffusive particle transport, indicating non-ergodicity, was taken to indicate the formation of
a gel. The percolation threshold was plotted and found to pass continuously across the stable
fluid boundary into the two-phase region(s). This threshold was estimated to be the transient
gelation threshold [4], although the gel line obtained by experiment is observed at higher
concentrations [2].
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3. Gel collapse

Colloidal gels are transient in nature, and therefore eventually destabilize. For the case where
the density of particles is greater than that of the suspending solvent, the destabilization of a gel
is marked by a sharp increase in its sedimentation rate by one or two orders of magnitude [3].
This settling behaviour, known as delayed sedimentation, has been observed in many weakly
attractive systems [11–13] but it remains a poorly understood phenomenon.

The detailed observations of collapsing gels reported in the accompanying article [5], as
well as some previous studies [3, 14], have shown a wide range of features, indicating great
physical richness. In the experiments [3,5,14], a colloidal suspension of near-hard spheres was
induced to gel by adding random-coil polymer to the solvent, causing an effective attraction
between the colloidal spheres via the depletion mechanism [15]. Once these mixtures had
been homogenized by tumbling, and then left to gel, the subsequent sedimentation of the
gelled suspension was observed to follow a number of different courses. For strong inter-
particle attractions∼10kBT (induced by a high concentration of added polymer), sedimentation
occurred at a low but fairly uniform rate. With weaker attractive interactions (∼4–8kBT ), the
gels were initially slow to sediment, continuing almost to fill the container for several hours
before suddenly collapsing to a much smaller volume over a period of about 1 h, settling as
a dense sediment. Thus, these colloid–polymer gels exhibited ‘delayed sedimentation’ with a
lifetime (time before the onset of the rapid collapse) which could be well defined. The gels
with a definite lifetime were further sub-categorized [14], as it was noticed that the lifetime
could depend on the initial height of the sample and even on the shape of the container.
However, gels with particularly weak inter-particle attractions were not observed to exhibited
such geometrical dependence [3, 14]. A more exhaustive study [5] has demonstrated that,
where height dependence is evident, it eventually saturates given a sufficiently tall sample.
Similarly, the accompanying experimental study [5] reveals a dependence of the lifetime on
sample width, that is found to saturate for a sufficiently wide geometry. The data from this
study [5] are discussed further in section 6.

Before proceeding to the next section, let us briefly consider the question ‘why does a
transient gel collapse?’. Clearly, since crystal–fluid coexistence is the equilibrium state of
the system, the gel would not be expected to last indefinitely. However, this does not explain
the mechanism of its demise. To solve the mystery, one might endeavour to identify some
cause of breakage of the system-spanning network2. Paradoxically, this would not provide
an explanation for the collapse, since the gel is apparently indifferent to the breakage of its
structure, as witnessed by several experiments. In one such experiment [14], a steel ball, several
millimetres in diameter, was introduced into a freshly gelled sample, and moved through the
gel by a hand-held magnet. This abuse of the delicate networked structure did not measurably
alter the gel’s lifetime. Furthermore, at low shear rate, a large shear deformation (�100%)
affected by a rheometer does not precipitate collapse [3], although the gel’s system spanning
structure must be broken many times over by such treatment. Also, a freshly formed gel may
be poured from one vessel to another without ill effect. Indeed, the most brutal treatment of
a gel; to shake it until all particles are torn from the aggregate and dispersed homogeneously;
is precisely the method of preparing a sample for gel formation. Clearly then, the structure
of a fresh gel can sustain continued breakage, since it has the ability to re-connect or heal
itself. So gel collapse must indicate that this healing ability has been compromised. These
ideas will be further quantified in the discussion of microscopic rates in section 5 and of ageing
in section 7.

2 Such an explanation is mooted in [16].
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4. Continuum model of a sedimenting gel

To understand the influence of large-scale geometry on a gel, we now develop a continuum
picture of force balance within a sedimenting sample. The general equations of motion
are determined in section 4.1, and solved in Fourier space to yield a dispersion relation,
in section 4.2, which we shall interpret in real space. Using some general results from that
investigation, we develop a simplified model of sedimentation in various specific geometries
in sections 4.3–4.5.

4.1. Equations of motion

A gel is an inter-connected network of colloidal particles immersed in a solvent at low Reynolds
number. The particles are generally not neutrally buoyant in the solvent, hence the eventual
sedimentation. Let us consider the forces experienced by a small (but sufficiently large to be
regarded as homogeneous) element of the network. It feels a tensorial stress σ transmitted by
neighbouring elements, and a force f (per unit volume) due to external fields including gravity.
An element of the particle network also experiences a drag force from the solvent through which
it passes, proportional and opposite to its velocity v relative to the fixed frame of the container.
The constant of proportionality � depends on the viscosity of the solvent and the geometry
of channels through which it must pass between aggregated particles. This description may
be regarded as a special limit of a two-fluid model [16], in which the ‘fluids’ are the solvent
and the particle network. One of the fluids (the solvent) is incompressible and of much lower
viscosity than the other. Additionally, the solvent has no large-scale hydrodynamics, as its
flow is screened by the porous nature of the aggregate. Hence solvent back-flow is an entirely
local phenomenon, and all the solvent’s hydrodynamics are embodied in the term �v.

If the particle network has a mass density ρ, exclusive of the suspending solvent, then
applying these forces to Newton’s second law gives

ρv̇ + �v + ∇ · σ = f (1)

where the tensor of stress transmitted through the network has been contracted with a gradient
operator to yield the unbalanced force on an infinitesimal element ∇βσαβ .

We require a constitutive relation to prescribe the network stress σ. To preserve as much
generality as possible, let us make only one assumption: that the constitutive relation is linear.
We assume, for the moment, that such a linear response regime exists. Later, we shall consider
the effects of non-linearity. The relation between a shear stress and strain rate in a viscoelastic
substance is routinely expressed in terms of the time-dependent stress relaxation modulus or
memory functionG(t). The tensorial generalization of this, to encompass stresses and strains
other than simple shear, is

σ(t) = −
∫ t

−∞
dt ′ G(t − t ′) : ∇v(t ′) (2)

where the tensor gradient of velocity −∇v is the generalization of simple shear rate. The
fourth-rank tensor G(t) has componentsGαβγ δ that determine the force component induced in
direction α across a surface in direction β by the gradient which occurred in direction γ of the
velocity component in direction δ at some earlier time. Rather than writing equation (2) in an
explicitly symmetrized form (with ∇v replaced by ∇v + (∇v)T ), we have chosen a compact
notation by absorbing this symmetrization into the definition of G.

Strictly speaking, the quantity σ appearing in the equation of motion (equation (1)) is
the Eulerian stress field, which is the force across a unit area at a fixed point. On the other
hand, equation (2) gives the Lagrangian stress, which is the force across a surface that is fixed
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relative to the gel. The time integral should not be evaluated at a fixed point in space, but rather
for a fixed element of the gel, since the stress in a given gel element is determined by its own
history, not by the history of the spatial point at which it presently resides. Such subtleties
can be ignored if displacements are either small in amplitude, or take place on a timescale
longer that the material memory for which G(τ )→ 0. In the former case gel elements remain
identified with a fixed point in space, and in the latter elements forget that they have not always
lived in the same place.

Note that the stress relaxation modulus G(t) appearing in equation (2) is not the one that
would be measured in a rheometric experiment. Rheometry measures the response of the
whole system: particle network plus solvent. Equation (2) gives the part of the stress carried
only by the network. This stress is measured only in a hypothetical experiment where a force
can be applied on the network alone, with the solvent replaced by a frictionless fluid or a
vacuum.

4.2. Momentum transport

Let us now solve the equations of motion (equations (1) and (2)) to find how a generic
perturbation propagates through the system. We define the temporal Fourier transform of
the velocity field by

v(r, t) =
∫ ∞

−∞
ṽ(r, ω)eiωt dω (3)

with ṽ(−ω) = ṽ∗(ω) to ensure a real velocity field, and similarly for the external force f .
Substituting into equations (1) and (2) yields

∇ · G∗(ω) : ∇ṽ + (ω2ρ − iω�)ṽ = −iωf̃(r, ω) (4)

in terms of the complex viscoelastic modulus tensor

G∗(ω) ≡ iω
∫ ∞

0
G(τ )e−iωτ dτ. (5)

In the inhomogeneous equation (4), the external force f acts as a source of perturbations, i.e.
gravity and boundaries displace the network. The system’s response, i.e. the way in which a
perturbation propagates, is determined by the auxiliary equation ((4) with f = 0), which is
solved by linear combinations of functions of the form

ṽ(r, ω) = v̂(ω)eik·r + v̂∗(ω)e−ik·r. (6)

Substituting this into equation (4) with f = 0 leads to the condition

G∗
αβγ δ(ω) kβ kγ v̂δ(ω) = (ω2ρ − iω�)v̂α(ω). (7)

We may choose, without loss of generality, to orient one coordinate axis along the wave
direction k, so that k = (0, 0, k). Then equation (7) simplifies to

G∗
αkkδv̂δ =

(
ω2ρ − iω�

k2

)
v̂α (8)

(summing on Greek indices only), which is an eigenvector equation for the second-rank
matrix G∗

αkkδ(ω). In three dimensions there are three solutions, with different orientations
of the velocity vector v̂ relative to the wavevector k. For simple materials these would be
one longitudinal and two transverse modes of momentum propagation, although for complex
materials with a skew tensor modulus the eigenvectors may point in other directions. Each
of the three modes has an associated eigenvalue G∗(ω) corresponding, for example, to shear
and bulk moduli for simple materials. Identifying this eigenvalue with the coefficient in
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equation (8) yields the value of k in terms of ω. Expressing each eigenvalue in terms of its
real and imaginary parts, the storage and loss moduli G∗ ≡ G′ + iG′′, the dispersion relation
for any of the three modes becomes

k2 = ω2ρ − iω�

G′(ω) + iG′′(ω)
. (9)

The dispersion relation is a Fourier-space constraint on perturbations to the gel. Let us
consider its implications for the motion in real space. The above derivation has followed very
standard lines for the solution of the equations of motion of a generic material. Consequently,
the expected behaviour of familiar materials is embodied in certain limits of the dispersion
relation (equation (9)). Additionally, for realistic parameters corresponding to a colloidal gel,
the relation reveals some interesting properties.

Clearly the wavevectors given by equation (9) are complex, k ≡ k′ + ik′′. In the context
of equation (6), the reciprocal of the imaginary part, k′′−1, is a decay length. That is to say, a
wave of frequency ω will decay over a distance k′′−1. Let us first consider the case of no losses
from dissipative coupling to the solvent (� = 0). This is the usual situation, since materials
are normally expected to respect Galilean invariance, and therefore cannot notice absolute
velocity as appears in the second term of equation (1), but feel only velocity gradients.

With the Galilean condition (� = 0), if the network is purely elastic (G′′ = 0) then
the dispersion relation is entirely real, so the decay length k′′−1 is infinite since there are no
losses. In this pedagogically familiar case, k2 ∝ ω2 so sound propagates, with a phase velocity√
G′(ω)/ρ. Real materials, on the other hand, are lossy (G′′ �= 0) so k′′ (and consequently the

decay length) is finite at finite frequency. However, the right-hand side of equation (9) vanishes
in the low-frequency limit so the decay length k′′−1 diverges, and momentum is transported
across the system. This is the case for an elastic solid, where G′(0) is finite so k2 ∼→ ω2

and low-frequency sound propagates. It is also the case for a material with zero yield stress
(G′(0) = 0). Classically, for such a material, G′′(ω) → ωη, where η is static viscosity, so
that low-frequency momentum transport is by diffusion (k2 ∼ ω). G′′ can vanish non-linearly
with ω, but always more slowly than ω2, so that k′′−1 → ∞.

If Galilean invariance is broken by a dissipative coupling to a fixed frame (� �= 0), however
small, the situation is quite different. In this case, an elastic solid (G′(0) �= 0) is still able to
transport momentum across the system (k′′−1 → ∞) at low frequency, but it is now a diffusive
process, since k2 → −iω�/G′(0) as ω → 0. With no static elasticity, and a viscous low-
frequency modulus G′′(ω)→ ωη, there is no frequency at which k′′−1 → ∞. The maximum
decay length is at ω = 0, where k′′−1 = r0 ≡ √

(η/�). Hence momentum is not transported
across this system. Instead, velocity perturbations are exponentially screened beyond a distance
r0. Some materials have non-trivial low-frequency viscoelastic response, withG′′(ω) varying
as a power of ω. If this power is less than unity, the viscosity η ≡ limω→0G

′′(ω)/iω diverges,
as does r0, and momentum is transported to infinity sub-diffusively. With a power greater than
unity, the decay length will have a maximum (defining the screening length r0) at a non-zero
frequency.

The screening of momentum that has arisen here should not be confused with the well
known screening of solvent flow through static porous media. That screening was mentioned in
section 4.1, and is the reason that the hydrodynamics of solvent back-flow can be treated locally.
In the present case, it is the porous medium itself (the particle network) whose momentum is
screened, given certain criteria. As the viscosity of the network increases, so does the screening
length r0, while the penetration depth for perturbations of the solvent flow field depends only
on the ‘pore’ size.
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In summary, materials with zero yield stress, non-diverging viscosity and a dissipative
coupling to a fixed frame are in a distinct and unusual class, for which momentum transport is
exponentially screened beyond a length-scale characteristic of the material. Every other class
of matter can transport momentum to infinity via sound, diffusion or anomalous diffusion. We
shall argue that the resulting novel class of matter with screened momentum transport includes
some transient particulate gels. If the inter-particle attractions are relatively weak then, on
the longest timescales, thermal motion must cause the memory function G(t) of such a gel
to decay, so that its low-frequency viscoelastic modulus is purely dissipative. The resulting
structural viscosity will be quantified in section 5. For the present we assert that, for the
transient gels in question,G′(ω)→ 0 as ω → 0 so that they possess a stress screening length.
Of course, the solvent in which the aggregated network is suspended can transmit sound, in
order to carry information about the rest-frame of the container. However, in order to view the
particle network as a material distinct from the solvent, we have implicitly assumed that the
speed of sound in the solvent is effectively infinite in comparison with the processes of interest.

The existence of a screening length r0 = √
(η/�) (in fact, three screening lengths: one

for each low-frequency normal mode) may explain some of the experimental observations of
transient gels. One might expect the network viscosity η to be an increasing function of inter-
particle attraction strength (as we shall estimate in section 5). Certainly this is observably true
of the rheometric shear viscosity [14] (a property of the whole system, including solvent). If so,
then gels with the weakest inter-particle attractions have the shortest screening length r0. If the
dimensions of a gel sample are greater than r0, then network stresses cannot be transmitted
across the system. In particular, if the sample is taller than r0 then the top of the aggregated
network cannot feel a supporting force transmitted from the bottom of the container. If the
top surface of the gel cannot receive a signal from the bottom of the container, and is therefore
unaware of its existence, then no properties of the sample can be a function of its height. This
could explain why gel lifetimes were observed to become independent of the sample height
for particularly weak inter-particle attractions [14].

4.3. Sedimentation

The emergence, from the dispersion relation, of a decay length which is maximum at zero
frequency is useful in constructing a model of gel sedimentation. It reveals that the most
important parameters governing the large-scale behaviour of a gel are the drag coefficient �
and the three zero-frequency viscosities η. Hence a minimal model using only these parameters
should capture the principal macroscopic features of the physics, without the need for a more
detailed description of G∗(ω). Such a model is now investigated.

To model a gelled sample in the early stage of sedimentation at a steady rate, only one
spatial direction is non-trivial if we ignore the effects of wall friction (which we shall consider
in the following sections). Let us imagine a semi-infinite sample, bounded only by the base (at
z = 0) of an infinitely broad container. In this case, equation (1) reduces to a scalar equation.
With the justification given above, we replace the network’s stress relaxation modulus in
equation (2) by its low-frequency limit, which we assume (as argued in section 5) is viscous,
Gzzzz(t) → ηc δ(t). Hence the network reacts against compression with a stress proportional
to the rate of compression, and ηc is a compressional viscosity. The external force density f
in equation (1) is due to gravity g acting on the suspended particles, which are not neutrally
buoyant. Their mass density differs from that of the solvent by  ρ. If φ is the concentration
(volume fraction) of the colloidal particles, then f = − ρgφ(z, t)with the positive z direction
defined vertically upwards. Hence, in the over-damped limit (�v � ρv̇) the equation of motion
(equation (1)) becomes
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 ρgφ = ηc ∂
2v

∂z2
− �v (10)

which states that the non-buoyant weight of colloidal particles is supported both by stress
transmitted through the viscous network, and by drag due to solvent back-flow.

In the absence of structural support (∂2v/∂z2 = 0), sedimentation is at the φ-dependent
terminal velocity which, for the initial concentration φ0, is v = −v0, given by equation (10)
as v0 =  ρgφ0/�. So equation (10) can be re-written as(

∂

∂z/rc

)2
v

v0
− v

v0
− φ

φ0
= 0 (11)

where the compressional stress screening length rc = √
(ηc/�) has emerged.

Having introduced a new dynamical variable φ(z, t), we require an extra constraint for
closure, which is supplied by continuity:

∂φ

∂t
= −∂(vφ)

∂z
. (12)

A steady-state solution exists for equations (11) and (12), given by setting ∂φ/∂t = 0
with boundary conditions v(0) = 0 and φ(∞) = φ0. However, this solution is unphysical,
as it requires a constant material flux into the boundary at z = 0, but no flux out, so that the
concentration φ becomes infinite here. This is a result of choosing a linear constitutive relation.
In practice, the response to compression cannot remain linear for arbitrarily large amplitudes
since, beyond a certain concentration, a sediment strongly resists further compaction. This non-
linearity is easily incorporated into our model if we demand that the sedimentation velocity v
falls to zero at a given concentration φs , which is the concentration of the dense sediment
observed experimentally. As this dense sediment builds up, its top surface must rise at a
speed vs , given by (φs − φ0)vs = φ0v0, due to conservation of matter.

The equations of motion have a physically realistic steady state in the rest frame of the
sediment surface. Transforming to a spatial coordinate ζ = z − vst (so that (∂/∂t)z =
(∂/∂t)ζ − vs(∂/∂ζ )t ), and demanding (∂/∂t)ζ = 0 in equation (12) yields

φ

φ0
=

[
φ0

φs
−

(
1 − φ0

φs

)
v

v0

]−1

(13)

which is substituted into equation (11) with ∂2/∂z2 → ∂2/∂ζ 2 and boundary conditions
v(0) = 0, v(∞) = −v0. This ordinary differential equation was solved by a numerical
relaxation method for various values of the parameter φ0/φs . Results for the concentration
φ and speed |v| are plotted in figure 1, as a function of height above the sediment in units
of the characteristic length rc. In each case, the gel at large heights remains at its initial
concentration φ0 and settles at its terminal velocity, supported only by drag. Conversely,
near the dense sediment, and up to a height of order the stress screening length rc, the gel is
compressed and decelerated.

We expect such a steady state to be achieved in samples whose initial height is much
greater than their characteristic length rc. If this is not the case, then the profile throughout the
sample will evolve with time, and depend on the initial height. To model that situation (which
we shall not pursue here) would require a no-stress boundary condition at the (descending) top
surface of the gel.

4.4. Sedimentation between walls

Having modelled sedimentation toward the base of a tall container, and far from its walls, let
us now consider a steady state in another geometry. At a height z � rc, where the influence
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Figure 1. Steady-state speed |v| (dashed curves) and concentration φ (solid curves), in arbitrary
units, as a function of height ζ above the advancing surface of dense sediment, in units of the
stress screening length rc . Ratio of initial concentration φ0 to sediment concentration φs is (a) 5%,
(b) 95%.

of the base is not felt, we can find the sedimentation velocity as a function of distance x across
a sample of width Lx , with plane vertical walls at x = ±Lx/2. We assume that the other
horizontal dimension Ly is large, so that no other boundaries influence the motion, and the
walls at x = ±Lx/2 are effectively infinite planes.

In this case, the only non-zero component of velocity is vz, and of gradient is ∇xv, so
that, in the limit of over-damping (ρv̇ � �v) and low frequency where Gzxxz(t) → ηsδ(t),
equations (1), (2) yield

r2
s

d2

dx2

|v|
v0

− |v|
v0

+ 1 = 0 (14)

where we have used the fact that the velocity field has no divergence, so that the concentration
remains at φ0. Here, ηs is the shear viscosity, and rs ≡ √

(ηs/�) is the shear stress screening
length. With the boundary conditions v = 0 at x = ±Lx/2, equation (14) is solved by

|v|
v0

= 1 − cosh(x/rs)

cosh(Lx/2rs)
. (15)

In the limit ηs � � (so rs → 0), sedimentation is uniform at the terminal velocity
|v|/v0 → 1. For rs finite but small compared with Lx , equation (15) describes plug flow, with
|v| ≈ v0 far from the walls while, near each wall, a layer of thickness ∼rs undergoes shear.
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Figure 2. Sedimentation speed |v| on the centre-line (x = 0) as a function of container widthLx in
units of the shear stress screening length rs , for steady sedimentation between two parallel walls.

In the opposite limit, where ηs � �L2
x (so the stress screening length exceeds the sample

size), equation (15) becomes independent of �, and describes a Poiseuille-like parabolic flow
profile

|v| → vp

8

[
1 −

(
2x

Lx

)2
]

(16)

with

vp ≡  ρgφ0 L
2
x

ηs
=

(
Lx

rs

)2

v0. (17)

In figure 2, the speed of sedimentation on the centre-line x = 0 is plotted, from
equation (15), as a function of the width Lx of the container. Clearly, for Lx � rs the velocity
is terminal and independent of the container’s width, while for Lx � rs forces from the walls
retard the sedimentation. It is noticeable that the speed remains strongly width dependent up
to Lx ∼ 4rs .

4.5. Sedimentation in a finite container

Finally, let us consider sedimentation in the geometry of a real container, bounded in all three
dimensions (once more in the over-damped limit �v � ρv̇). A general solution in this case is
rather involved, but interesting physics may be learnt from studying the form of the governing
equations of motion. We assume that velocity is always oriented in the z-direction, but now
allow gradients in all directions. As before, we take the low-frequency limit and assume a
non-skew modulus, so that Gzβγ z(t) = ηδβγ (t) with the compressional viscosity η = ηc for
β = z, and the shear viscosity ηs otherwise. Hence, equations (1) and (2) yield the partial
differential equation(

∂

∂x/rs

)2
v

v0
+

(
∂

∂y/rs

)2
v

v0
+

(
∂

∂z/rc

)2
v

v0
− v

v0
= φ

φ0
. (18)

Since φ0 is the initial concentration, the right-hand side of equation (18) is typically of order
unity. If v is typically of order the terminal velocity v0, as it is in a large container, then it is
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clear from equation (18) that variations in velocity are typically on length-scales of order the
stress screening length (for shear rs in x and y directions, and for compression rc in z).

If, on the other hand, one dimension of the container (Lx , say) is much smaller than the
relevant characteristic length (rs), then the typical velocity scale is no longer v0, but vp as
shown in section 4.4. Using the definition vp ≡ v0(Lx/rs)

2, equation (18) can be re-cast as(
∂

∂x/Lx

)2
v

vp
+

(
∂

∂y/Lx

)2
v

vp
+

(
ηc

ηs

)2 (
∂

∂z/Lx

)2
v

vp
= φ

φ0
+

(
Lx

rs

)2
v

vp
. (19)

Here, the last term is negligible if the thickness of the container is small compared with the
stress screening length, i.e.Lx � rs . In this case, it is immediately apparent from equation (19)
that the characteristic scale for variation in any direction is no longer the stress screening length,
but the smallest dimension of the container3 Lx . Hence the condition for a gel’s properties to
be independent of its initial height Lz (since the top surface cannot feel the presence of the
base) is less rigorous than Lz � rc ≡ √

(ηc/�), although this condition is sufficient. Height
dependence also asymptotes if Lx � rs with Lz � Lx ηc/ηs .

In practice, as we shall discuss in section 7, steady states such as those modelled here
can only be quasi-steady, since the parameters characterizing the sample (η, �) must evolve
slowly with time as the gel ages. We estimate the early values of these parameters in section 5.
Nevertheless, we note some similarity between the concentration profiles in figure 1, and those
obtained experimentally for weak gels in the preceding article [5], albeit in the later stages
when hydrodynamics and ageing have become complex. The experimental data exhibit a
rise in concentration above a dense sediment, over a height interval which may be set by the
thickness Lx of the sample cell, and asymptote to a uniform concentration, equal to the initial
value. By contrast, experimental concentration profiles for stronger gels vary with time over
the entire sample height [5].

5. Estimation of material parameters

As discussed in sections 1 and 2, we have the view of a gelled suspension as a tenuous
network of aggregated particles. In the limit of strong, short-ranged inter-particle attractions,
the structure is expected to be somewhat like that produced by DLCA. It has been noted by
various authors [17, 18] that the rigid, inflexible bonds defining the DLCA process are not
appropriate to spherical particles with central potentials, which have no angular rigidity. On
contact, attractive hard spheres may bond strongly, but are still free to roll over one another,
so that local compaction occurs, and more bonds are formed. Once a sphere has rolled over its
neighbours and formed new bonds, to the point that it belongs to a tetrahedral structure, it has
no more angular freedom. So a locally compact structure, built from tetrahedral assemblies of
spheres, does have the angular rigidity required by DLCA, and can thus aggregate into tenuous
clusters on larger length-scales [17, 18]. Hence, the system-spanning network is compact on
the scale of a couple of particle diameters, but tenuous (we shall assume self-similarity with
fractal dimension df ), at larger distances, up to the characteristic ‘cluster size’ ξ , identified
in small-angle light scattering experiments [1]. Beyond this scale, clusters cannot continue to
be fractal, as a fractal has an ever-decreasing mass density with increasing size. Hence the
tenuous clusters are compactly arranged in a space-filling network.

Each cluster has many delicate limbs. Just a few of these limbs are connected to
neighbouring clusters, and transmit stress, holding the network together. Those limbs that

3 Lxηc/ηs for the z direction. However, it will be argued, in section 5, that the shear and compressional structural
viscosities are approximately equal.
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are networked can be said to form the ‘backbone’ of a cluster, which is a contorted object with
fractal dimension db. We shall assume that such a backbone behaves as a Hookeian spring,
with elastic constant ke.

We recall from section 3 that the network of particles is in a constant state of breakage and
healing. The mechanical response of the network, which we intend to estimate, is dictated by
the properties of the connected backbones which transmit stress: their rates of formation and
breakage, spring constant and number density. We now proceed to make order-of-magnitude
estimates of these quantities, as well as the solvent drag coefficient, which depends on the
geometry of the whole aggregate.

5.1. Drag coefficient

The force density due to the flow of solvent, at low Reynolds number, through the particle
network, is related to the sedimentation speed v in equation (1) via the drag coefficient �. In
the reference frame of the sedimenting particle network, v is the macroscopic rate of flow of
solvent. Regarding the network as a porous medium, Darcy’s law [19, 20] states that, at low
Reynolds number, this flow rate is proportional to the pressure gradient (equivalent to force
density), with constant of proportionality k/µ, which defines the ‘permeability’ k. Hence our
drag coefficient is the ratio of solvent viscosity to network permeability. Several methods
exist [21] for estimating permeability without explicitly solving the equations of fluid flow in
the porous geometry, the simplest of which is the Carman–Kozeny equation [22], which is
known to yield good order-of-magnitude estimates for many porous media [20, 21],

k ∼ 1 − φ
c0

(
1 − φ
S

)2

. (20)

Here, S is surface area per unit volume, and c0 is a number of order unity. For rough surfaces,
such as that presented to the solvent by the aggregated spheres, the specific surface area S is
ill defined, as it depends on the resolution of coarse-graining in describing the surface. In the
extreme, for a fractal surface, S can diverge, while permeability k remains finite [20]. We
find further shortcomings of equation (20), in two specific cases for which all quantities are
exactly calculable: a polydisperse set of pipes, and a polydisperse set of parallel-sided cavities.
In each case, while equation (20) holds for narrow distributions, it uses the wrong moments
of the distribution of sizes of channels, and must therefore fail for high polydispersity. We
circumvent both these problems by noting that the quantity in parentheses in equation (20)
is a characteristic length, for which we substitute an alternative measure. In determining the
fluid velocity at a given point, it is a knowledge of the distance to the nearest obstacle R that
is most important, rather than the amount of surface S. We shall term this the remoteness
of the point. Its mean square over all space unoccupied by particles, 〈R2〉empty, remains well
defined even when the surface is fractal. Moreover, we find that replacing the parenthesized
part of equation (20) by 〈R2〉empty yields an expression for k that employs the correct moments
of the distribution of channels for the two polydisperse paradigms (pipes and cavities). The
coefficient c0 then varies little between the two geometries (4/3 for pipes, 2 for cavities). The
distribution of remoteness has been measured for simulated DLCA aggregates [23]. If the
remoteness is defined to be zero for any point occupied by a particle then an average over the
whole system volume becomes 〈R2〉V = (1 − φ)〈R2〉empty, so that our replacement for the
Carman–Kozeny equation may be written

µ

�
≡ k ≈ 0.6〈R2〉V . (21)

This, and the other quantities estimated in this section, will be compared with experimental
values in section 6, to assess the validity of our model of a sedimenting gel.
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5.2. Linear response

In order to obtain the structure’s linear response, we shall assume that the rates of formation
and breakage are set by thermal excitation. Large and fast imposed deformations of the system
would influence these rates, giving rise to a non-linear response. However, we shall restrict our
attention to linear response arising from thermal activation. The principal motivation for this is
the pursuit of simplicity, in a system of such complexity that the number of parameters required
for a detailed description could easily get out of hand. We shall show a posteriori that the linear
response (and low-frequency) regime is appropriate to at least some of the slowly sedimenting
gels investigated. Where the structural viscosity becomes non-linear, we expect it to decrease
with applied strain because of a stress-induced increase in the rate of backbone breakage,
so that our linear analysis puts an approximate upper bound on the structural viscosity, and
therefore on the stress screening length. This is also suggested by experimentally observed
shear-thinning of the rheometric shear viscosity at the stresses accessible to rheometry [14],
with a non-integer power-law relationship between stress and strain rate. Clearly though,
this non-linearity cannot persist to the smallest strain rates, which we believe to be relevant
to the early stages of sedimentation since, as calculated below, thermal activation eventually
limits the lifetime of elastic elements. In practice, ‘shear-thinning’ (in this case, compressional
thinning) behaviour may be present at the bottom of a sample, where the rate of compression
is greatest, while linear response is maintained in the region just above this. So the height to
which the compressional ‘signal’ reaches is still largely determined by the linear response.

5.3. Breakage rate

When thermal activation alone is responsible for structural re-arrangements, the rate-limiting
process for breakage of a backbone is the thermal activation of a few load-bearing particles, of
radius a, out of several attractive potentials of bond energy U0. Given that z is the number of
bonds required to be broken in order for a load-bearing particle to hop (in fact, roll [18]) from its
site on a backbone to a neighbouring site, and that a small number of such rearrangements cause
a backbone to yield, dissipating its stored elastic energy, the average lifetime of a backbone,
of fractal dimension db, is

τb ∼
(
ξ

2a

)−db (
 2

D0

)
exp(zβU0)

(zβU0)2
(22)

whereβ ≡ 1/kBT . Here, we have appealed to Arrhenius’s law, with a microscopic rateD0/ 
2

whereD0 is the diffusion constant of a particle, and is the range of the interaction potential
from which it must escape. If, instead of a square well, we assume a ramp potential (which
better approximates the depletion potential in a colloid–polymer mixture) then Arrhenius’s law
becomes modified by the factor (zβU0)

2 (from the Smoluchowski equation [24]). The factor
(ξ/2a)−db is the number of particles in a backbone, and therefore the number of sites at which
the backbone could yield [18].

5.4. Healing rate and gelation

When a connection breaks, its associated cluster gains some freedom to move, which it will
do until one of its many dangling limbs touches another cluster and forms a new connection,
thereby becoming a backbone. Hence, although the unconnected limbs are irrelevant to stress
transmission while a cluster’s backbone is intact, their geometry controls the rate of ‘healing’
following the breakage of a connection. This rate of re-connection is limited by the time
τh taken for a cluster to travel sufficiently far to meet another cluster. In the linear regime,
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this motion, unassisted by imposed deformation, is diffusive, with diffusion constant 2aD0/ξ .
Hence

τh ∼ R2
0
ξ

2aD0
(23)

where R0 is the typical distance between clusters.
It is not at all trivial to estimate the inter-cluster distance R0. Various authors have,

explicitly or implicitly, made simplifying assumptions, by settingR0 equal to the inter-particle
spacing in a uniform (not fractally clumped) distribution [18] or equal to the cluster size
ξ [25]. The latter assumption is supported by the premise that the percolating structure formed
by DLCA is characterized by a single length-scale ξ . In fact, for percolating DLCA aggregates,
the clusters of size ξ are separated by sparsely populated, channel-like regions of sizeR0(� a)

whose ratio to ξ , though φ independent [23], is small. This length R0 is closely related to
moments of the remoteness distribution (see section 5.1), controlling the value of �, the drag
coefficient associated with solvent back-flow, since it is the width of the channel of least
resistance.

The density of connected, load-bearing clusters will be severely reduced if the time taken
for connections to re-form or ‘heal’ τh becomes comparable to or greater than the time between
breakages τb. In that case, a significant fraction of the clusters will be in a mobile state, not
rigidly connected to the percolating network. We shall suggest in section 7 that this is the reason
for the eventual collapse of a gel. Initially, however, given that an experimentally observable
gel exists, we may assume that this is not the case, so τb � τh for a freshly prepared gel. We
shall make no further use of the estimate of τh, but note that a crude estimate of the gel line
could be obtained by solving τb = τh in equations (22) and (23).

5.5. Spring constant

In addition to the rates of breakage and re-connection of a stress-transmitting backbone, we
require its spring constant in order to obtain the mechanical response of the network. For a
simple spring, the elastic constant ke is inversely proportional to its length. A load-bearing
backbone, however, is a fractal object, so its elastic constant depends on its length ξ via a
non-trivial power:

ke = k0(ξ/2a)
−Zc . (24)

In this section we shall find both the ‘compliance exponent’ Zc and prefactor k0.
For a simply connected backbone of fractal dimension db, the compliance exponent was

calculated by Kantor and Webman [26] as Zc ≈ 2 + db in the limit of large ξ . However, lower
values of Zc were measured indirectly, from simulations of two-dimensional aggregates [17],
with measured values anywhere from 1.0 to 2.5 ± 0.5 depending on details of the microscopic
interactions. The lower values were attributed to the existence of loops in the structures, at the
length-scales of fractality (<ξ ) [17]. We suggest an alternative, though related, explanation.

Firstly notice that the expected result for a simple spring, Zc = 1, is not recovered from
Kantor and Webman’s result [26] in the limit of a straight chain architecture, db = 1. This
is because their calculation is for a very long random chain, in which compliance is mainly
due to bending of its many joints. They explicitly dropped that part arising from stretching,
as it grows more slowly with chain length ξ . The result therefore is neither applicable to the
simulations of [17] nor to the experimental data [5] analysed in section 6 since, in both cases,
the chains are short.

To derive the relevant value ofZc, we re-visit the calculation of Kantor and Webman [26].
They showed that the elastic energy H due to a force F , applied to the end of a chain of N
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bonds of undeformed length l between N + 1 particles at positions Ri , is

H = F 2

2

(
NS2

⊥
G

+
lL‖
Q

)
(25)

in terms of constants G and Q associated with local bending and compression respectively.
The lengths S⊥ and L‖ are given by

S2
⊥ ≡ 1

NF 2

N−1∑
i=0

[F × (RN − Ri )]
2,

L‖ ≡ 1

lF 2

N−1∑
i=0

[F · (Ri+1 − Ri )]
2.

It was then shown [26] that S⊥ is of the order of the chain length ξ so that, since N = (ξ/ l)db ,
the first term of equation (25) implies a force constant

k⊥ = G

NS2
⊥

∼ ξ−(2+db),

yielding the compliance exponent for long chains where this term dominates. For short chains,
we now proceed to calculate the compliance exponent from the second term of equation (25).
The definition of L‖ can be re-written as

L‖ = lN cos2 θ

where the bar indicates an average over all bonds in the chain, and θ is the angle between a
bond and the applied force F . Note that lN is the contour length of the chain, and that its
end-to-end distance is

ξ = lN cos θ.

Using the Schwartz inequality

cos θ � cos2 θ � 1

we deduce

1 � L‖
ξ

�
(
ξ

l

)db−1

from which we can put bounds on the elastic constant k‖ from the second term of equation (25),

Q

l2

(
ξ

l

)−1

� k‖ � Q

l2

(
ξ

l

)−db
.

Hence, assuming a power-law dependence of the elastic constant on ξ , we find a strong
constraint on the compliance exponent

1 � Zc � db (26)

which agrees with expectations for a simple spring when db = 1.
The constant of proportionality k0 in equation (24) is the elastic constant on the single-

particle scale—a property of the inter-particle potential. For certain interactions, k0 could be
approximated by the second derivative of the potential, but this approximation is inapplicable
to singular potentials such as the depletion potential [15]. More precisely, k0 is a response
function, giving the relation between the mean separation 〈l〉 of a pair of bound particles,
and an applied force F , thus k−1

0 ≡ d〈l〉/dF where 〈l〉 = (d/dF) ln
∫

exp[−U(l) + F l] dl
for an inter-particle potential U(l) in units of kBT . The range of integration is the range of
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the potential, since we consider only bound particles. It follows that the microscopic elastic
constant is given by the variance of ‘bond lengths’, according to (βk0)

−1 = 〈l2〉 − 〈l〉2.
For the experimental system [5], which is a colloid–polymer mixture, the interaction

potential is a depletion attraction [15]. For the purpose of order-of-magnitude estimation, we
approximate this by a ramp potential of range  and depth U0. Given that βU0 � 1, the
variance of a particle’s position in such a potential is ∼( /βU0)

2, so the spring constant of
an aggregated backbone is

βke ∼
(
βU0

 

)2 (
ξ

2a

)−Zc
. (27)

5.6. Connection density

In order to estimate the stresses transmitted by the percolating structure, the final quantity we
require is the number of load-bearing backbones per unit area, nb. It has been argued [17, 25]
that the distance between percolating backbones defines a different scale from the cluster
size ξ observed in density correlations. This is based on the idea that a cluster must move
a considerable distance (of order ξ ) in order to connect with a neighbour, requiring work
to be done to bend some already connected backbones [25]. In fact the nearest points on
neighbouring clusters are not separated by ξ , but by a shorter distance, R0 or less, so that it is
relatively easy for each cluster to form connections and carry stress. Indeed, the simulations of
sheared gels in [17] support this view, since the ‘connectivity length’ n−1/2

b is there estimated
to be just two or three times the cluster size. Given that we are interested in order-of-magnitude
estimates, then, we shall set

n
−1/2
b ∼ ξ (28)

which assumes that most clusters transmit stress.

5.7. Structural viscosities

The force transmitted across a unit area in a compressed or sheared network, σ , is simply given
by Hooke’s law for a number nb (equation (28)) of appropriately oriented elastic backbones
with spring constant ke (equation (27)), deformed by an amount  r . That is,

σ = nb ke  r.
Given that a backbone typically has a lifetime τb (equation (22)) and length ξ , the typical
deformation  r that it acquires due to a compression rate or shear rate γ̇ is

 r ∼ ξ τb γ̇ .
When, after a time τb, a backbone is thermally broken, the elastic energy of deformation that
it stored is dissipated. The structural viscosity η (compressional or shear) of the network is
defined by σ = ηγ̇ , so we identify

η ∼ nb ke ξ τb (29)

which, from equations (22), (27) and (28) evaluates to

η

µ
∼

(
2a

ξ

)Zc+db+1

ezβU0 (30)

where we have used the Stokesian single-particle diffusion constant D0 = kBT /6πµa in a
solvent of viscosity µ.
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Recall that this structural viscosity is not directly measurable, as it is the viscosity of
the particulate network in the absence of its suspending solvent. We have estimated the
structural viscosities for compression and shear to be approximately equal, since similar
amounts of network deformation occur in either geometry. Hence the screening lengths
(rc, rs) for compressional and shear stresses, evident in experiments, are expected to be
approximately equal. This is despite the very different rheometric responses to compression
(which requires compression/expulsion of solvent) and shear (which only requires solvent
to be sheared).

6. Comparison with experiments

Let us now summarize our predictions, and compare them with the results of the experiments
presented in the companion article [5]. Recall that, in order to estimate the parameters of
our continuum model, we have assumed the structure to be that of a fresh gel, i.e. at a short
time after formation. Nonetheless, this early-stage physics has implications for the later-stage
behaviour.

Firstly, we find qualitative agreement between the theory of section 4 and the experiments
reported in the previous article [5]. The experiments showed evidence of a stress screening
length in the gels, beyond which momentum transport was not possible. This manifested itself
as a characteristic length-scale above which the gel, supported only by backflow of solvent,
exhibited a size-independent delay time. Gels smaller than their characteristic length-scale,
and thus supported by their interconnected structure, showed size dependence. Both size-
dependent and independent delay times were found in the same sample, depending on its size
relative to the characteristic length-scale.

We take as a case study the sample, reported in the preceding article [5], with colloidal
radius a = 186 nm and volume fraction φ = 0.200 ± 0.002. The polymeric concentration is
Cp = 7.14 ± 0.14 mg cm−3. With a polymeric molecular mass Mw = 320 000 g mol−1 and
radius of gyration rg = 17 nm, this implies an effective colloid–colloid depletion potential of
depth U0 ≈ 6.5kBT and range  = 2rg = 34 nm.

Our estimate of the drag coefficient � (equation (21)) can be compared with experiment if
the initial slow sedimentation rate of the gel in the size-independent regime is known. However,
in the experimental study [5], no initial settling was observed in the widest samples, due to
a very flat meniscus, causing the gelled aggregate to stick to the top solvent–air interface.
In the absence of a non-zero measurement of the initial sedimentation rate, we are forced to
use the value obtained in the size-dependent regime. We expect the value of vs in the size-
dependent regime to be smaller than the terminal velocity v0 =  ρgφ0/�, which allows us
to set an upper bound on the drag coefficient �. The highest non-zero value of the initial
sedimentation rate (in the height-independent regime) is found to be vs = 0.03±0.01µm s−1.
Using this value, and the density difference of  ρ = 282 kg m−3 between the colloidal poly-
methylmethacrylate (PMMA) and the solution of polystyrene in cis-decahydronaptheline, we
obtain an upper bound on the drag coefficient, � � 1.84×1010 kg m−3 s−1, which we expect to
be close to the true value. This is consistent with our theoretical estimate, using equation (21),
of � ∼ 0.8 × 1010 kg m−3 s−1, providing a second point of agreement between theory and
experiment. We have used the viscosity of the polymer solution of µ = 3.0 × 10−3 Pa s, and
〈R2〉V ≈ 0.75Q−2

gel from simulations [23]. Here,Qgel is the wavenumber at which the structure
factor of the fully aggregated system has a peak, and is therefore a measure of the correlation
length ξ ∼ 2π/Qgel. We assume Qgel ≈ 0.2 a−1 [1, 27], which is the value at which Qgel

has been reported to saturate for concentrations φ � 0.1, and was reported at φ = 0.2 for a
colloid–polymer gel very similar to our sample [1].
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For this gel [5], a height-dependent delay time was observed, only for initial heights up to
5 mm. Similarly, width dependence was apparent for sample widths around 10 mm and below.
We infer that rs ∼ rc ∼ 5 mm, confirming a third non-trivial prediction of our theory: due to the
similarity of shear and compressional modes of the particle network (though not of the system
as a whole) the associated characteristic lengths for a gel sample are approximately equal.

As a fourth ‘check-point’, we compare the magnitude of the observed characteristic length
rc,s ≈ 5 mm with our theoretical value rc,s = √

(η/�), using the estimates of � and η in
equations (21) and (30). Since the result is very sensitive to the depth of the depletion potential
U0 and to the number z of bonds to be broken in displacing a load-bearing particle, we can
expect only order-of-magnitude predictive power, and therefore take the logarithm of the result,
yielding

ln
r2
c,s

〈R2〉V ≈ zβU0 + (Zc + db + 1) ln
2a

ξ
. (31)

The fractal dimension of the backbone must be a little over unity. Let us use the value for
simple percolation [26], db = 1.18. From equation (26), the compliance exponent then lies
in the range 1 � Zc � 1.18. For definiteness, we use a middle value Zc ≈ 1.1. Substituting
into equation (31), we obtain the experimentally observed stress transmission length if z ≈ 4,
which, from geometrical intuition, seems an entirely reasonable value, i.e. four bonds must
be broken for a particle to leave its load-bearing site, and roll over a pair of neighbours into a
non-load-bearing site. Certainly, the orders of magnitude agree.

In our simplified model (equation (10) or (18)), we have made the assumption of a purely
viscous network response, neglecting any elastic memory. Our low-frequency, linear analysis
is limited by the backbone lifetime to deformation rates below τ−1

b . Rates faster than this will
be subject to a non-zero storage modulus (since some backbones remain unbroken) and non-
linearity due to stress-affected breakage and healing rates. For our assumptions to be valid,
the backbones of the gel structure must break at least once, due to thermal rearrangements, in
the time taken for the gel to significantly deform by sedimentation. We must therefore check
that the mean breaking time τb is less than the time taken for a point in the gel to fall by the
characteristic distance rc at its initial velocity v0. The ratio of the observed length-scale to
early sedimentation speed is rc,s/vs = 1.7×105 s = 46 h. This is compared with our estimate
of the mean lifetime of a backbone (using z = 4) from equation (22), τb = 7 × 104 s = 19 h.
Though we do not have the separation of timescales required for our assumption of purely
dissipative response to be strictly valid, the fact that τb < rc,s/vs indicates that corrections
due to elasticity would not significantly change our order-of-magnitude calculations. It also
validates our picture of a non-solid gel, in which elastic energy is dissipated on experimental
timescales. Our estimate of the breaking time τb due to thermal rearrangements in equation (22)
is sensitive to the value zU0, so we should remain suspicious of our assumption of linearity.
Nonetheless, we have some confidence in our use of a low-frequency (i.e. purely viscous)
constitutive relation. We expect that the mean lifetime of structural elements is not very much
greater than our estimate, since it would be limited by rc,s/vs due to stress-induced breakage,
leading to shear thinning. This lends weight to our belief (via equation (29)) that the elastic
constant of a backbone is not much smaller than our estimate in equation (27). In particular,
the experimental data are inconsistent with the values of the compliance exponent calculated
in the long-chain limit [26], and with the highest values estimated from simulations of two-
dimensional aggregates under shear [17]. Our use of the short-chain limit (see section (5.5)) is
further supported by comparing the backbone length ξ to its thickness, which, for tetrahedrally
packed particles, is approximately 3.6a. We obtain ξ/3.6a ≈ 9, which clearly does not indicate
a long chain.
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7. Discussion

Transient particulate gels are a poorly understood state of matter, exhibiting varied and often
perplexing behaviour. Since much of their underlying physics is unknown, it would be rash to
undertake the construction of a quantitatively exact model of these gels. Instead, in this article,
we have investigated the broad principles governing their various regimes of behaviour.

Having established that a dissipative coupling between a material with zero yield stress
(and well behaved viscosity) and a fixed frame, gives rise to a characteristic length-scale, we
have demonstrated that this explains some of the observations of transient gels in colloid–
polymer mixtures, reported in the preceding article [5]. The characteristic length-scale is
manifested in the saturation of the dependence of gel lifetime on sample height.

Our picture of the transient gel is supported by the observation that the characteristic
length-scale associated with the height of a gel sample (due to the compressional mode) is
equal to that associated with its width (due to shear), as predicted in section 5. Without our
understanding of the mechanics of the gel structure, it would not be immediately obvious
that these length-scales should be equal, so the experimental confirmation of the prediction is
significant. It is also significant that our calculated estimate of the length-scale is in order-of-
magnitude agreement with the measurements.

From our estimate of the drag coefficient, we can further assert that we understand the
origin of the initial slow sedimentation rate of the gels in the regime of shallow inter-particle
potentials or, equivalently, large containers. Such gels do not have self-supporting structures,
but sediment at their terminal velocity, supported predominantly or entirely by drag. These
are the samples whose lifetime is independent of the container size. By contrast, gels with
inter-particle attractions sufficiently strong that the percolating network can transmit a stress
right across the container support some of their own weight as they sediment. These gels
collapse at a time that depends on the container size or, in the limit of very strong attractions,
have no sudden collapse at all.

Thus, the size dependence of the different behavioural regimes is explained. However,
we have not yet accounted for the very existence of a well defined lifetime and a rapid phase
of collapse. With our improved understanding of the early stages of sedimentation, let us now
speculate on the physics of these phenomena.

As we reasoned in section 3, the collapse must result from a reduction in the network’s
ability to re-connect or heal itself. A reduction in the healing rate (increase in healing time
τh) indicates a change in the gel’s micro-structure. In particular, from equation (23), since
the correlation length ξ is known to vary little between formation and collapse [1], the gap
between clusters R0 must increase.

The ageing and coarsening of the micro-structure of fractal objects is known as sintering.
The process can approximate two limiting ideals [28]: sintering by surface diffusion or
by viscous flow. In either case, the process is driven by surface tension, which prefers
rearrangements that decrease the surface area of an aggregate, thus rounding the corners and
smoothing the surface of a crenellated cluster. In the former case, particles cannot move if they
are buried within the bulk of a thick backbone or other structural element of the cluster, so that
the only mobile particles are those in the surface layer, which can diffuse by hopping across
the surface of the aggregate. These particles tend to diffuse away from highly curved regions
such as the tips of the finest feathery tendrils, causing such fingers to withdraw and the void
between clusters to increase in width R0. In the latter case, sintering by viscous flow, particles
buried inside the treelike branches are not frozen, but can re-arrange with a finite viscosity.
Thus when the finest tendrils are withdrawn, their material is not only re-distributed over the
surface of the aggregate, but flows in bulk through its branches and backbones. In a numerical
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study [28], it was shown that the two processes have very dissimilar consequences for the
large-scale evolution of isolated clusters. The diameter (i.e. largest linear dimension) of such a
cluster undergoing viscous flow was shown to shrink continuously from the onset of sintering,
varying with time t approximately as t1−2/df in two dimensions. In contrast, surface diffusion
was observed to coarsen the structure on the smallest length-scales first, and to proceed through
a hierarchy of lengths, while the overall diameter of the isolated cluster remains approximately
constant until the very late stages [28]. In either case, if sintering clusters are not isolated (as in
the cited numerics [28]) but aggregated (as in the gels), the withdrawal of the finest protrusions
should result in an increase of R0 and, by equation (23), a reduction in the healing rate. In
simple terms, with fewer outstretched fingers, a falling cluster is not so quickly caught by its
neighbours. This coarsening, then, is the cause of the ultimate failure of the transient gel.

The colloidal PMMA particles used in the experiments [5] behave as almost ideal hard
spheres. Light scattering data on similar samples to those discussed in this paper [3] show
a peak in the structure factor at a wavenumber corresponding approximately to one particle
diameter, thus indicating that, locally, particles are closely packed within the structure of the
aggregates. At random close packing, hard spheres behave as a glass, with local caging of
particles leading to a large (possibly divergent) viscosity. Further evidence for glassy behaviour
in the gels, in the form of the dynamic structure factor, comes from dynamic light scattering
experiments [3]. In the light of this, we do not expect particles buried within an aggregated
branch, and surrounded by their full complement of close-packed neighbours, to have any
significant mobility, compared with those at a free surface. It therefore appears most likely
that ageing of our aggregates of hard colloids proceeds by surface diffusion sintering.

By contrast, it is interesting to note that ageing of a transient gel was recently observed in
experiments on a colloidal suspension of polystyrene in water [29]. The polystyrene particles
were sufficiently soft to be easily deformed by interactions, and could even fuse together4.
Despite the absence of gravitational compaction, since the particles were made neutrally
buoyant by tuning the proportions of H2O and D2O in the solvent, the gelled aggregates
were observed to shrink continuously throughout the experiment [29]. It seems reasonable to
interpret these observations as indicating sintering of the soft particulate aggregates by viscous
flow, as opposed to the surface diffusion process expected with hard particles. We note that
the bond strengths (by Van der Waals attraction) in those experiments [29] were much higher
than in our own, so that momentum would propagate over distances far in excess of the sample
size, and elastic response was dominant on experimental timescales.

Having considered the coarsening process (surface diffusion) and its driving force (surface
tension), it remains only to discuss the rate at which the sintering occurs. This depends on the
mechanism by which particles are activated to hop between sites on the aggregate surface. In
section 5 we assumed this was by thermal Brownian motion within the binding potential, and
inferred the resulting structural viscosity of the freshly formed network. In the later stages of
collapse, large-scale hydrodynamic motions are clearly visible to the naked eye [3, 5]. In the
gels with fairly weak inter-particle attractions, colloidal material torn from the aggregate can
be seen to be expelled ‘volcanically’ into the supernatant from the top surface of the collapsing
gel. It is clear then that, at some point in the gel’s development, back-flow of solvent becomes
a dominant influence on the rearrangement of particles.

It is not a trivial task to model the activation of surface diffusion by the solvent flow field,
but we can speculate on certain aspects of the process. If the sintering rate is a function of the
speed of solvent back-flow and not entirely dominated by thermal activation as we expect in the

4 The fusion of particles was described in [29] as ‘sintering’. This is a different usage of the word from that applied
in this paper. We use it to mean a coarsening of the entire fractal cluster, due to rearrangements of its constituent
particles, as also interpreted in [28].
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early stages, then clearly it is an increasing function. The sintering causes the gaps or channels
between clusters to widen and so, from equation (21), the drag coefficient� decreases. We can
consider this flow-activated surface diffusion sintering to be akin to the erosion process that
forms rivers. If the gel sample is much smaller than its characteristic stress transmission length,
then the non-buoyant weight of the network (f in equation (1), or the LHS of equation (10)) is
predominantly supported structurally, and a decrease in the drag coefficient is irrelevant to the
sedimentation rate. If, on the other hand, the characteristic length is small compared with the
container, then the aggregate’s weight is supported predominantly by drag (�v), so a decrease
in � results in an increase in the sedimentation speed v to maintain force balance. Since the
sintering rate is an increasing function of the speed of solvent back-flow, and therefore of v,
we have a positive feedback loop, leading to a runaway sedimentation speed. We therefore
expect to see a signature of positive feedback in those samples with such weak interactions
that rc,s is small compared with the container, and no such signature for very strong or small
samples. The sudden collapse evident in the experiments [5] is just such a signature, and is
absent from the strongest and shortest gels, for which our estimate of rc,s exceeds the sample
dimensions, and in which ‘creeping’ behaviour [5] is observed. We note, however, that, by the
time the sedimentation rate becomes strongly non-linear, highly complex hydrodynamics are
apparent in the experiments [5]. Such phenomena are beyond the scope of our model, which
is valid only for the early stages, though it is during the early stages that the subsequent fate
of the gel is fixed.

8. Conclusion

In summary, transient gelation is a non-classical, though ubiquitous, phase-ordering
phenomenon. Though several studies have probed the early stages of gelation [1–3], transient
gels remain poorly understood, particularly in the later stages, when they collapse by delayed
sedimentation. Though we have not attempted to calculate the delay time for the regime where
collapse is sudden, we have identified the factors on which it depends.

While a gel is still freshly formed, the structure of its particulate network is tenuous,
with only small intervening cavities of solvent. Since this structure suppresses large-
scale hydrodynamics, we have been able to construct a model where solvent dynamics are
summarized in a dissipative coupling of the particulate network to a fixed (non-Galilean-
invariant) frame. We have shown that such a coupling, in the absence of zero-frequency
elasticity, results in a novel class of matter, ‘torpid matter’, which will not transmit momentum
beyond a finite distance. We have demonstrated that the colloid–polymer transient gels
reported in the accompanying experimental article [5] are an example of this peculiar matter,
by identifying the characteristic length-scale (in both compressional and shear modes), and
establishing order-of-magnitude agreement with the predicted size. We have further shown
how a sample’s behaviour is controlled by the ratios of its width, height and stress-transmission
length. Along the way, we have derived new, useful formulae for the permeability of fractal
porous media, and for the elasticity of a short fractal strut (the opposite limit to that previously
calculated [26]).

In order to understand better the mechanisms of collapse, we suggest that the influence of
solvent flow on the erosive sintering of fractal objects would be a fruitful area of study.
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